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Introduction

Background

In the case of a user-equilibrium assignment (UE), sufficient convergence of the iteraঞve algorithm is regarded as essenঞal for the stability of

the obtained set of traffic flows. With the relaঞve gap (RelGap-DUE), there is a commonly used approach for measuring convergence. In its

current formulaঞon, it is, however, only properly applicable for a determinisঞc user-equilibrium (DUE) assignment. In this paper, a generalized

formulaঞon of the relaঞve gap is introduced that can also be used in a logit-based stochasঞc user-equilibrium (MNL-SUE) environment.

Objecঞves

Develop a convergence measure for a logit-based user-equilibrium assignment (MNL-SUE) that consঞtutes a generalizaঞon of the relaঞve

gap (RelGap-DUE).

Keep the formulaঞon and value range as close as possible to those of ’original’ relaঞve gap (RelGap-DUE).

AWay to Derive the 'Original' Relative Gap

We start by examining a way to derive the relaঞve gap (RelGap-DUE) from an mathemaঞcal opঞmizaঞon problem by BECKMANN et al. [1].

The opঞmizaঞon problem is only solved by traffic flows dodr equivalent to the traffic flows under DUE condiঞons.
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For our proposes, we are interested in the first-order (Karush-Kuhn-Tucker, KKT) condiঞons for a soluঞon of the problem (which are also

sufficient condiঞons since we are dealing with a strictly convex opঞmizaঞon problem). To derive the relaঞve gap (RelGap-DUE) based on the

first-order condiঞons, we proceed as follows:

1. We form the gradient of the Lagrangian L(dodr, λod, µodr) with respect to dodr and solve the equaঞon of 5dodr
L(dodr, λod, µodr) = 0 towards

the µodr mulঞplier to determine an expression based on travel ঞmes todr for the mulঞplier.

2. Since the other KKT mulঞplier λod is sঞll part of this expression, it is in turn expressed in terms of travel ঞmes by introducing λod as the

minimum travel ঞme minr todr for an origin-desঞnaঞon pair. This is possible since at the equilibrium point the travel ঞme on all used routes

between a given origin and desঞnaঞon is equal to the minimum travel ঞme between that origin-desঞnaঞon pair.

3. In order to form the relaঞve gap (RelGap-DUE), we now consider the complementary slackness condiঞon where we replace µodr with its

equivalent expression in terms of travel ঞmes. Then we form the sums over all routes and origin-desঞnaঞon pairs, yielding the gap

formulaঞon for DUE. Introducing the total travel ঞme as a reference value then yields the known relaঞve gap (RelGap-DUE) formulaঞon.
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Note that we can ignore the other first-order condiঞons due to the nature of soluঞon algorithms such as Franke-Wolfe or MSA that only

select feasible descent direcঞons.

Development of a Relative Gap for Logit-based SUE (and DUE)

The idea is now to form a convergence measure for MNL-SUE by looking at the complementary slackness condiঞon and the KKT mulঞpliers

in the stochasঞc case. For that, we consider the opঞmizaঞon problem for MNL-SUE by FISK [2].

Opঞmizaঞon problem (MNL-SUE)
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In comparison to the opঞmizaঞon problem for DUE, the objecঞve funcঞon in the case of MNL-SUE is extended by a ’stochasঞc’ or rather

entropic term while the constraints remain unchanged. To develop a relaঞve gap for MNL-SUE, we proceed as follows:

1. We determine an expression for the µodr mulঞplier in the same way as in the DUE case. Due to the addiঞonal ’stochasঞc’ term in the

objecঞve funcঞon, however, the µodr mulঞplier is dependent on the travel ঞmes todr and the traffic flows dodr.

2. To express the λod mulঞplier in the MNL-SUE case in terms of travel ঞmes and traffic flows, we introduce the mulঞplier as an expression

without route enumeraঞon that at the equilibrium point is equivalent to the term todr + 1
β ln dodr + 1

β for all used routes. In comparsion to

RelGap-DUE, the minimum travel ঞme minr todr for an origin-desঞnaঞon pair can here be interpreted as the expected value of the

perceived travel ঞme E [minr todr] (see SHEFFI [3]) for an origin-desঞnaঞon pair as travelers are trying to minimize their perceived travel
ঞme and not the measurable travel ঞme.

3. We use the complementary slackness condiঞon again as a basis to form the gap for MNL-SUE. By subsঞtuঞng the new expression of λod

into the new expression of µodr and the combined expression into the complementary slackness condiঞon, we obtain a gap formulaঞon

for MNL-SUE. Introducing the total travel ঞme again as a reference value then yields a relaঞve gap formulaঞon for MNL-SUE.
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When comparing both relaঞve gap approaches, the more universal character of the relaঞve gap for MNL-SUE is easily noঞceable. Just as

the DUE assignment is a specific case of the MNL-SUE assignment, the relaঞve gap for DUE is a specific version of the relaঞve gap for

MNL-SUE. The ’switch’ between both relaঞve gaps is the β parameter.

For measuring the convergence of a DUE assignment, the parameter β needs to be set at ∞. As a result, the ’stochasঞc’ term 1
β ln

(
dodr

dod

)
becomes zero and the ’expected perceived travel ঞme’ E [minr todr] equals the minimum travel ঞme minr todr. Hence, all stochasঞc

elements are filtered out of the gap funcঞon and the relaঞve gap indicates the convergence of DUE, an equilibrium based on all travelers

objecঞvely choosing a route with minimum travel ঞme.

Measuring the convergence of MNL-SUE works by seমng the β parameter in the gap funcঞon as the scaling parameter β that is used in
the MNL-SUE case for increasing or decreasing subjecঞvity concerning route choice. Decreasing β from ∞ towards zero results in

travelers increasingly choosing routes based on their perceived uঞlity rather than their objecঞve travel ঞme. Thus there occurs a shi[

from measurable route travel ঞme to subjecঞve route uঞlity as a route choice criterion.

In summary, the relaঞve gap (RelGap-MNL) works for DUE and MNL-SUE with

DUE : β = ∞ MNL-SUE : β = Parameter

Numerical Example

Example network

We use the small, two route network in the figure below as a basis for the following numerical examples. For further simplicity, each route

only consists of one link, and we assume a linear relaঞonship between traffic flow and travel ঞme. The traffic flow for the origin-desঞnaঞon

pair is assumed to be d = 1000 and the flow conservaঞon constraint d = d1 + d2 holds at all ঞmes.

Origin

Destination

Route  1

Route  2

Behavior of RelGap-MNL for Different β

For β = 1, the graph of RelGap-MNL (Figure b) behaves similarly to the graph of RelGap-DUE (Figure a). This concurs with our suggesঞon
to use RelGap-MNL with β = ∞ for a DUE assignment. However, if we decrease β towards zero, the behavior of the graph of RelGap-MNL
changes as the minimum point moves along the x-axis, increasing the traffic flow on route 1 towards a new opঞmal soluঞon of MNL-SUE
traffic flows.
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(b) MNL-SUE (β = 1, β = 0.1, β = 0.01)

In the process, the graph of RelGap-MNL also gets a more parabolic form as the importance of the stochasঞc elements increases by decreasing

β. As this creates a lower relaঞve gap for soluঞons close to the opঞmal soluঞon, it indicates that a set threshold for RelGap-MNL should
depend in some way on the β parameter that is being used.
Considering the paper of BOYCE et al. [4], where a value for RelGap-DUE (RelGap-MNL where β = ∞) is suggested, further studies are
needed to define RelGap-MNL values that ensure acceptable levels of convergence, examining the idea of a range of required thresholds

depending on different β.
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